Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.10.12.561993

RESUMO

Monitoring in vivo viral dynamics can improve our understanding of pathogenicity and tissue tropism. For positive-sense, single-stranded RNA viruses, several studies have attempted to monitor viral kinetics in vivo using reporter genomes. The application of such recombinant viruses can be limited by challenges in accommodating bioluminescent reporter genes in the viral genome. Conventional luminescence also exhibits relatively low tissue permeability and thus less sensitivity for visualization in vivo. Here we show that unlike NanoLuc bioluminescence, the improved method, termed AkaBLI, allows visualization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Syrian hamsters. By successfully incorporating a codon-optimized Akaluc luciferase gene into the SARS-CoV-2 genome, we visualized in vivo infection, including the tissue-specific differences associated with particular variants. Additionally, we could evaluate the efficacy of neutralizing antibodies and mRNA vaccination by monitoring changes in Akaluc signals. Overall, AkaBLI is an effective technology for monitoring viral dynamics in live animals.


Assuntos
COVID-19 , Infecções por Coronavirus
2.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.12.29.522275

RESUMO

The Omicron variant continuously evolves under the humoral immune pressure obtained by vaccination and SARS-CoV-2 infection and the resultant Omicron subvariants exhibit further immune evasion and antibody escape. Engineered ACE2 decoy composed of high-affinity ACE2 and IgG1 Fc domain is an alternative modality to neutralize SARS-CoV-2 and we previously reported its broad spectrum and therapeutic potential in rodent models. Here, we show that engineered ACE2 decoy retains the neutralization activity against Omicron subvariants including the currently emerging XBB and BQ.1 which completely evade antibodies in clinical use. The culture of SARS-CoV-2 under suboptimal concentration of neutralizing drugs generated SARS-CoV-2 mutants escaping wild-type ACE2 decoy and monoclonal antibodies, whereas no escape mutant emerged against engineered ACE2 decoy. As the efficient drug delivery to respiratory tract infection of SARS-CoV-2, inhalation of aerosolized decoy treated mice infected with SARS-CoV-2 at a 20-fold lower dose than the intravenous administration. Finally, engineered ACE2 decoy exhibited the therapeutic efficacy for COVID-19 in cynomolgus macaques. Collectively, these results indicate that engineered ACE2 decoy is the promising therapeutic strategy to overcome immune-evading SARS-CoV-2 variants and that liquid aerosol inhalation can be considered as a non-invasive approach to enhance efficacy in the treatment of COVID-19.


Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave
3.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.12.14.520006

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes significant morbidity and mortality worldwide, seriously impacting not only human health but also the global economy. Furthermore, over 1 million cases of newly emerging or re-emerging viral infections, specifically dengue virus (DENV), are known to occur annually. Because no virus-specific and fully effective treatments against these and many other viruses have been approved, they continue to be responsible for large-scale epidemics and global pandemics. Thus, there is an urgent need for novel, effective therapeutic agents. Here, we identified 2-thiouridine (s2U) as a broad-spectrum antiviral nucleoside analogue that exhibited antiviral activity against SARS-CoV-2 and its variants of concern, including the Delta and Omicron variants, as well as a number of other positive-sense single-stranded RNA (ssRNA+) viruses, including DENV. s2U inhibits RNA synthesis catalyzed by viral RNA-dependent RNA polymerase, thereby reducing viral RNA replication, which improved the survival rate of mice infected with SARS-CoV-2 or DENV in our animal models. Our findings demonstrate that s2U is a potential broad-spectrum antiviral agent not only against SARS-CoV-2 and DENV but other ssRNA+ viruses.


Assuntos
Infecções por Coronavirus , Infecções
4.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.11.15.22282328

RESUMO

Introduction In addition to the original monovalent vaccines available for SARS-CoV-2, bivalent vaccines covering wild-type (WT) and Omicron BA.1 are also available. However, there is a lack of real-world data on the effectiveness of bivalent vaccines as second boosters on the dominant Omicron sublineages, including BA.2 and BA.5. Methods This prospective longitudinal cohort study was conducted at Toyama University Hospital, a tertiary medical center in Japan. Participants (n = 565) who received the first booster vaccination were followed up until 2 weeks after the second booster dose of the monovalent mRNA-1273 (WT group, n = 168) and bivalent BNT162b2 (WT+BA.1 group, n = 23) vaccines. Participants with previous SARS-CoV-2 infections were excluded from the study. Anti-receptor-binding domain (RBD) antibody levels and neutralizing activity were measured. Vaccine-related symptoms were also assessed using a questionnaire after the second booster dose. Results The anti-RBD antibody levels after the second booster dose in the WT and WT+BA.1 group were similar (median [inter quartile], 26262.0 [16951.0-38137.0] U/mL vs. 24840.0 [14828.0-41460.0] U/mL, respectively). Although the neutralization activity of the pooled sera of the WT+BA.1 group was the lowest against BA.5, the activities against BA.2 and BA.5 were higher than those of the WT group in both pseudotyped and live virus assays. Vaccine-related symptoms, including systemic and local symptoms, were strongly correlated with anti-RBD antibody levels and neutralizing titers with significant differences. Conclusion The second booster dose of the bivalent (WT/Omicron BA.1) vaccine induced higher neutralizing activity against BA.2 and BA.5 than that of the original monovalent vaccine.


Assuntos
Síndrome Respiratória Aguda Grave , COVID-19
5.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.08.01.502275

RESUMO

Many patients with severe COVID-19 suffer from pneumonia, and thus elucidation of the mechanisms underlying the development of such severe pneumonia is important. The ORF8 protein is a secreted protein of SARS-CoV-2, whose in vivo function is not well understood. Here, we analyzed the function of ORF8 protein by generating ORF8-knockout SARS-CoV-2. We found that the lung inflammation observed in wild-type SARS-CoV-2-infected hamsters was decreased in ORF8-knockout SARS-CoV-2-infected hamsters. Administration of recombinant ORF8 protein to hamsters also induced lymphocyte infiltration into the lungs. Similar pro-inflammatory cytokine production was observed in primary human monocytes treated with recombinant ORF8 protein. Furthermore, we demonstrate that the serum ORF8 protein levels are correlated well with clinical markers of inflammation. These results demonstrated that the ORF8 protein is a viral cytokine of SARS-CoV-2 involved in the in the immune dysregulation observed in COVID-19 patients, and that the ORF8 protein could be a novel therapeutic target in severe COVID-19 patients.


Assuntos
Pneumonia , Síndrome Respiratória Aguda Grave , COVID-19 , Inflamação
6.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.02.23.22271433

RESUMO

IntroductionThe vaccine against SARS-CoV-2 provides humoral immunity to fight COVID-19; however, the acquired immunity gradually declines. Booster vaccination restores reduced humoral immunity; however, its effect on newly emerging variants, such as the Omicron variant, is a concern. As the waves of COVID-19 cases and vaccine programs differ between countries, it is necessary to know the domestic effect of the booster. MethodsSerum samples were obtained from healthcare workers (20-69 years old) in the Pfizer BNT162b2 vaccine program at the Toyama University Hospital 6 months after the second dose (6mA2D, n = 648) and 2 weeks after the third dose (2wA3D, n = 565). The anti-SARS-CoV-2 antibody level was measured, and neutralization against the wild-type and variants (Delta and Omicron) was evaluated using pseudotyped viruses. Data on booster-related events were collected using questionnaires. ResultsThe median anti-SARS-CoV-2 antibody was >30.9-fold elevated after the booster (6mA2D, 710.0 U/mL [interquartile range (IQR): 443.0-1068.0 U/mL]; 2wA3D, 21927 U/mL [IQR: 15321.0->25000.0 U/mL]). Median neutralizing activity using 100-fold sera against wild-type-, Delta-, and Omicron-derived variants was elevated from 84.6%, 36.2%, and 31.2% at 6mA2D to >99.9%, 99.1%, and 94.6% at 2wA3D, respectively. The anti-SARS-CoV-2 antibody levels were significantly elevated in individuals with fever [≥]37.5 {degrees}C, general fatigue, and myalgia, local swelling, and local hardness. ConclusionThe booster effect, especially against the Omicron variant, was observed in the Japanese population. These findings contribute to the precise understanding of the efficacy and side effects of the booster and the promotion of vaccine campaigns.


Assuntos
Síndrome Pulmonar por Hantavirus , Febre , Mialgia , COVID-19 , Fadiga
7.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.02.22.481436

RESUMO

Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future variant infections. In this study, we identified mutations resistant to remdesivir, which is widely administered to SARS-CoV-2-infected patients, and discuss the cause of resistance. First, we simultaneously constructed eight recombinant viruses carrying the mutations detected in in vitro serial passages of SARS-CoV-2 in the presence of remdesivir. Time course analyses of cellular virus infections showed significantly higher infectious titers and infection rates in mutant viruses than wild type virus under treatment with remdesivir. Next, we developed a mathematical model in consideration of the changing dynamic of cells infected with mutant viruses with distinct propagation properties and defined that mutations detected in in vitro passages canceled the antiviral activities of remdesivir without raising virus production capacity. Finally, molecular dynamics simulations of the NSP12 protein of SARS-CoV-2 revealed that the molecular vibration around the RNA-binding site was increased by the introduction of mutations on NSP12. Taken together, we identified multiple mutations that affected the flexibility of the RNA binding site and decreased the antiviral activity of remdesivir. Our new insights will contribute to developing further antiviral measures against SARS-CoV-2 infection.


Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave
8.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.11.17.468963

RESUMO

Many specimens suffer from low particle density and/or preferred orientation in cryoEM specimen grid preparation, making data collection and structure determination time consuming. We developed an epoxidized graphene grid (EG-grid) that effectively immobilizes protein particles by applying an oxidation reaction using photoactivated ClO 2 • and further chemical modification. The particle density and orientation distribution are both dramatically improved, having enabled us to reconstruct the density map of GroEL and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), at 1.99 and 2.16 Å resolution from only 504 and 241 micrographs, respectively. A low concentration sample solution of 0.1 mg ml −1 was sufficient to reconstruct a 3.10 Å resolution density map of SARS-CoV-2 spike protein from 1,163 micrographs. The density maps of V 1 -ATPase, β-galactosidase, and apoferritin were also reconstructed at 3.03, 1.81, and 1.29 Å resolution, respectively. These results indicate that the EG-grid will be a powerful tool for high-throughput cryoEM data collection to accelerate high-resolution structural analysis of biological macromolecules.

9.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.10.25.465714

RESUMO

We are in the midst of the historic coronavirus infectious disease 2019 (COVID-19) pandemic caused by severe respiratory syndrome coronavirus 2 (SARS-CoV-2). Although countless efforts to control the pandemic have been attempted--most successfully, vaccination--imbalances in accessibility to vaccines, medicines, and diagnostics among countries, regions, and populations have been problematic. Camelid variable regions of heavy chain-only antibodies (VHHs or nanobodies) have unique modalities: they are smaller, more stable, easier to customize, and, importantly, less expensive to produce than conventional antibodies. We present the sequences of nine alpaca nanobodies that detect the spike proteins of four SARS-CoV-2 variants of concern (VOCs)--namely, the alpha, beta, gamma, and delta variants. We show that they can quantify or detect spike variants via ELISA and lateral flow, kinetic, flow cytometric, microscopy, and Western blotting assays. The panel of nanobodies broadly neutralized viral infection by pseudotyped SARS-CoV-2 VOCs. Structural analyses showed that a P86 clone targeted epitopes that were conserved yet unclassified on the receptor-binding domain (RBD) and located inside the N-terminal domain (NTD). Human antibodies have hardly accessed both regions; consequently, the clone buries hidden crevasses of SARS-CoV-2 spike proteins undetected by conventional antibodies and maintains activity against spike proteins carrying escape mutations.


Assuntos
Infecções por Coronavirus , COVID-19
10.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.08.22.457114

RESUMO

mRNA-based vaccines provide effective protection against most common SARS-CoV-2 variants. However, identifying likely breakthrough variants is critical for future vaccine development. Here, we found that the Delta variant completely escaped from anti-N-terminal domain (NTD) neutralizing antibodies, while increasing responsiveness to anti-NTD infectivity-enhancing antibodies. Although Pfizer-BioNTech BNT162b2-immune sera neutralized the Delta variant, when four common mutations were introduced into the receptor binding domain (RBD) of the Delta variant (Delta 4+), some BNT162b2-immune sera lost neutralizing activity and enhanced the infectivity. Unique mutations in the Delta NTD were involved in the enhanced infectivity by the BNT162b2-immune sera. Sera of mice immunized by Delta spike, but not wild-type spike, consistently neutralized the Delta 4+ variant without enhancing infectivity. Given the fact that a Delta variant with three similar RBD mutations has already emerged according to the GISAID database, it is necessary to develop vaccines that protect against such complete breakthrough variants.

11.
ssrn; 2021.
Preprint em Inglês | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3900407

RESUMO

As potential pandemic vaccines, DNA/RNA vaccines, viral vector vaccines and protein-based vaccines have been rapidly developed to prevent pandemic spread worldwide. In this study, we designed plasmid DNA vaccine targeting the SARS-CoV-2 Spike glycoprotein (S protein) as pandemic vaccine, and the humoral, cellular, and functional immune responses were characterized to support proceeding to initial human clinical trials. After intramuscular injection of DNA vaccine encoding S protein with alum adjuvant (three times at 2-week intervals), the humoral immunoreaction, as assessed by anti-S protein or anti-receptor-binding domain (RBD) antibody titers, and the cellular immunoreaction, as assessed by antigen-induced IFNγ expression, were up-regulated. In IgG subclass analysis, IgG2b was induced as the main subclass. Based on these analyses, DNA vaccine with alum adjuvant preferentially induced Th1-type T cell polarization. We confirmed the neutralizing action of DNA vaccine-induced antibodies by a binding assay of RBD recombinant protein with angiotensin-converting enzyme 2 (ACE2), a receptor of SARSCoV-2, and pseudo-virus assay, TCID assay with live SARS-CoV-2. Further B cell epitope mapping analysis using a peptide array showed that most vaccine-induced antibodies recognized the S2 and RBD subunits. Finally, DNA vaccine protected hamsters form SARSCoV-2 infection. In conclusion, DNA vaccine targeting the spike glycoprotein of SARS-CoV-2 might be an effective and safe approach to combat the COVID-19 pandemic.Funding: This study was supported by Project Promoting Support for Drug Discovery grants(JP20nk0101602 and JP21nf0101623h102) from the Japan Agency for Medical Research andDevelopment and Panasonic Co. (Japan). To fight against the worldwide COVID-19 pandemic, the development of an effective and safe The Department of Health Development and Medicine is an endowed department supported by Anges, Daicel, and FunPep. The Department of Clinical Gene Therapy is financially supported by Novartis, AnGes, Shionogi, Boeringher, Fancl, Saisei Mirai Clinics, Rohto and Funpep. Declaration of Interest: R.M. is a stockholder of FunPep and Anges. T.O. T.K. and Y.S. are employees of Anges. R.I, A.T, H.K, S.K, E.T, S.M, and H.T are employees of FunPep. R.M, H.T, and A.T. are FunPep stockholders. All other authors declare no competing interests.Ethical Approval: All experiments were approved by the Ethical Committee for Animal Experiments of the Osaka University Graduate School of Medicine.


Assuntos
COVID-19 , Leucemia de Células T
12.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.05.26.21257884

RESUMO

Objectives Vaccines against severe acute respiratory syndrome coronavirus-2 have been introduced. To investigate whether the vaccine provides protective immunity effectively, the amount and function of vaccine-induced antibodies were evaluated. Methods Sera from 13-17 days after the second dose of the Pfizer BNT162b2 vaccine were collected from healthcare workers at the University of Toyama (n=740). Antibody levels were quantitatively measured by the anti-receptor binding domain antibody test (anti-RBD test), and neutralising activity against pseudotyped viruses displaying wild-type (WT) and mutant spike proteins (B.1.1.7- and B.1.351-derived variants) were assayed using a high-throughput chemiluminescent reduction neutralising test (htCRNT). Basic clinical characteristics were obtained from questionnaires. Results Antibodies were confirmed in all participants in both the anti-RBD test (median 2112 U/mL, interquartile range [IQR] 1275-3390 U/mL) and the htCRNT against WT (median % inhibition >99.9, IQR >99.9 to >99.9). For randomly selected sera (n=61), 100.0% were positive for htCRNT against the B.1.1.7- and B.1.351-derived variants. Among those who answered the questionnaire (n=237), the values of the anti-RBD test were negatively correlated with age for females (p<0.01; r = -0.31, 95% confidence interval -0.45 to -0.16). Systemic symptoms after vaccination were related to higher values of the anti-RBD test (median 2425, IQR 1450 - 3933 vs. median 1347, IQR 818 - 2125 for no symptoms; p<0.01). Conclusions The BNT162b2 vaccine produced sufficient antibodies in terms of quality and quantity which could neutralise emerging variants. Antibody induction can be affected by age and sex but will still be at a sufficient level.


Assuntos
Insuficiência Respiratória
13.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.05.25.21257828

RESUMO

Background Serological tests are beneficial for recognizing the immune response against SARS-CoV-2. To identify protective immunity, optimization of the chemiluminescent reduction neutralizing test (CRNT), using pseudotyped SARS-CoV-2, is critical. Whether commercial antibody tests are comparably accurate is unknown. Methods Serum samples collected before variants were locally found were obtained from confirmed COVID-19 patients (n = 74), confirmed non-COVID-19 individuals (n = 179), and unscreened individuals (suspected healthy individuals, n = 229). The convalescent phase was defined as the period after day 10 from disease onset. The CRNT against pseudotyped viruses displaying the wild-type spike protein and a commercially available anti-receptor binding domain (RBD) antibody test were assayed. The CRNT was also assayed, using South African (SA) and United Kingdom (UK)-derived variants. Results The CRNT (cut off value, 50% inhibition) and the anti-RBD antibody test (cut off value, 0.8 U/mL) concurred regarding symptomatic COVID-19 patients in the convalescent phase and clearly differentiated between patients and suspected healthy individuals (sensitivity; 95.8% and 100%, specificity; 99.1% and 100%, respectively). Anti-RBD antibody test results correlated with neutralizing titer (r = 0.47, 95% CI 0.20-0.68). Compared with the wild-type, CRNT reduction was observed for the SA and UK-derived variants. Of the samples with [≥]100 U/mL by the anti-RBD antibody test, 77.8% and 88.9% showed [≥]50% neutralization against the UK and the SA variants, respectively. Conclusion The CRNT and commercial anti-RBD antibody test effectively classified convalescent COVID-19 patients. The strong positive results using the commercial antibody test can reflect neutralizing activity against emerging variants.


Assuntos
COVID-19
14.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.04.02.438288

RESUMO

During the current SARS-CoV-2 pandemic that is devastating the modern societies worldwide, many variants that naturally acquire multiple mutations have emerged. Emerging mutations can affect viral properties such as infectivity and immune resistance. Although the sensitivity of naturally occurring SARS-CoV-2 variants to humoral immunity has recently been investigated, that to human leukocyte antigen (HLA)-restricted cellular immunity remains unaddressed. Here we demonstrate that two recently emerging mutants in the receptor binding domain of the SARS-CoV-2 spike protein, L452R (in B.1.427/429) and Y453F (in B.1.298), can escape from the HLA-24-restricted cellular immunity. These mutations reinforce the affinity to viral receptor ACE2, and notably, the L452R mutation increases protein stability, viral infectivity, and potentially promotes viral replication. Our data suggest that the HLA-restricted cellular immunity potentially affects the evolution of viral phenotypes, and the escape from cellular immunity can be a further threat of the SARS-CoV-2 pandemic.

15.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.01.13.426436

RESUMO

There is an urgent need to limit and stop the worldwide coronavirus disease 2019 (COVID-19) pandemic via quick development of efficient and safe vaccination methods. Plasmid DNA vaccines are one of the most remarkable vaccines that can be developed in a short term. pVAX1-SARS-CoV2-co, which is a plasmid DNA vaccine, was designed to express severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein. The produced antibodies lead to Immunoreactions against S protein, anti-receptor-binding-domain, and neutralizing action of pVAX1-SARS-CoV2-co, as confirmed in a previous study. To promote the efficacy of the pVAX1-SARS-CoV2-co vaccine, a pyro-drive jet injector (PJI) was employed. PJI is an injection device that can adjust the injection pressure depending on various target tissues. Intradermally-adjusted PJI demonstrated that pVAX1-SARS-CoV2-co vaccine injection caused a strong production of anti-S protein antibodies, triggered immunoreactions and neutralizing actions against SARS-CoV-2. Moreover, a high dose of pVAX1-SARS-CoV2-co intradermal injection via PJI did not cause any serious disorders in the rat model. Finally, virus infection challenge in mice, confirmed that intradermally immunized (via PJI) mice were potently protected from COVID-19 infection. Thus, pVAX1-SARS-CoV2-co intradermal injection via PJI is a safe and promising vaccination method to overcome the COVID-19 pandemic.


Assuntos
COVID-19 , Infecções por Coronavirus , Infecções Tumorais por Vírus
16.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.01.14.426726

RESUMO

We present a structure-based model of phosphorylation-dependent binding and sequestration of SARS-CoV-2 nucleocapsid protein and the impact of two consecutive amino acid changes R203K and G204R. Additionally, we studied how mutant strains affect HLA-specific antigen presentation and correlated these findings with HLA allelic population frequencies. We discovered RG>KR mutated SARS-CoV-2 expands the ability for differential expression of the N protein epitope on Major Histocompatibility Complexes (MHC) of varying Human Leukocyte Antigen (HLA) origin. The N protein LKR region K203, R204 of wild type (SARS-CoVs) and (SARS-CoV-2) observed HLA-A*30:01 and HLA-A*30:21, but mutant SARS-CoV-2 observed HLA-A*31:01 and HLA-A*68:01. Expression of HLA-A genotypes associated with the mutant strain occurred more frequently in all populations studied. ImportanceThe novel coronavirus known as SARS-CoV-2 causes a disease renowned as 2019-nCoV (or COVID-19). HLA allele frequencies worldwide could positively correlate with the severity of coronavirus cases and a high number of deaths.


Assuntos
Síndrome Respiratória Aguda Grave , Morte , COVID-19
17.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.12.18.423363

RESUMO

Our understanding of protective vs. pathologic immune responses to SARS-CoV-2, the virus that causes Coronavirus disease 2019 (COVID-19), is limited by inadequate profiling of patients at the extremes of the disease severity spectrum. Here, we performed multi-omic single-cell immune profiling of 64 COVID-19 patients across the full range of disease severity, from outpatients with mild disease to fatal cases. Our transcriptomic, epigenomic, and proteomic analyses reveal widespread dysfunction of peripheral innate immunity in severe and fatal COVID-19, with the most profound disturbances including a prominent neutrophil hyperactivation signature and monocytes with anti-inflammatory features. We further demonstrate that emergency myelopoiesis is a prominent feature of fatal COVID-19. Collectively, our results reveal disease severity-associated immune phenotypes in COVID-19 and identify pathogenesis-associated pathways that are potential targets for therapeutic intervention.


Assuntos
COVID-19
18.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.12.18.423358

RESUMO

SARS-CoV-2 infection causes severe symptoms in a subset of patients, suggesting the presence of certain unknown risk factors. Although antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike have been shown prevent SARS-CoV-2 infection, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from COVID-19 patients, and found that some of antibodies against the N-terminal domain (NTD) dramatically enhanced the binding capacity of the spike protein to ACE2, and thus increased SARS-CoV2 infectivity. Surprisingly, mutational analysis revealed that all the infectivity-enhancing antibodies recognized a specific site on the surface of the NTD. The antibodies against this infectivity-enhancing site were detected in all samples of hospitalized COVID-19 patients in the study. However, the ratio of infectivity-enhancing antibodies to neutralizing antibodies differed among patients. Furthermore, the antibodies against the infectivity-enhancing site were detected in 3 out of 48 uninfected donors, albeit at low levels. These findings suggest that the production of antibodies against SARS-CoV-2 infectivity-enhancing site could be considered as a possible exacerbating factors for COVID-19 and that a spike protein lacking such antibody epitopes may be required for safe vaccine development, especially for individuals with pre-existing enhancing antibodies.


Assuntos
COVID-19
19.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.12.18.423439

RESUMO

The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has presented a crisis for global healthcare systems. Human SARS-CoV-2 infection can result in coronavirus disease 2019 (COVID-19), which has been characterised as an acute respiratory illness, with most patients displaying flu-like symptoms, such as a fever, cough and dyspnoea. However, the range and severity of individual symptoms experienced by patients can vary significantly, indicating a role for host genetics in impacting the susceptibility and severity of COVID-19 disease. Whilst most symptomatic infections are known to manifest in mild to moderate respiratory symptoms, severe pneumonia and complications including cytokine release syndrome, which can lead to multi-organ dysfunction, have also been observed in cases worldwide. Global initiatives to sequence the genomes of patients with COVID-19 have driven an expanding new field of host genomics research, to characterise the genetic determinants of COVID-19 disease. The functional annotation and analysis of incoming genomic data, within a clinically relevant turnaround time, is therefore imperative given the importance and urgency of research efforts to understand the biology of SARS-CoV-2 infection and disease. To address these requirements, we developed SNPnexus COVID. This is a web-based variant annotation tool, powered by the SNPnexus software.


Assuntos
Infecções por Coronavirus , Sinais e Sintomas Respiratórios , Febre , Pneumonia , Tosse , COVID-19 , Insuficiência Respiratória
20.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.12.18.423467

RESUMO

Reverse Transcriptase - Polymerase Chain Reaction (RT-PCR) is the gold standard as diagnostic assays for the detection of COVID-19 and the specificity and sensitivity of these assays depend on the complementarity of the RT-PCR primers to the genome of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the virus mutates over time during replication cycles, there is an urgent need to continuously monitor the virus genome for appearances of mutations and mismatches in the PCR primers used in these assays. Here we present assayM, a web application to explore and monitor mutations introduced in the primer and probe sequences published by the World Health Organisation (WHO) or in any custom-designed assay primers for SARS-CoV-2 detection assays in globally available SARS-CoV-2 genome datasets.


Assuntos
COVID-19 , Infecções por Coronavirus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA